Risk Stratification in Hypertrophic Cardiomyopathy. Insights from Genetic Analysis and Cardiopulmonary Exercise Testing

Magrì D, Mastromarino V, Gallo G, Zachara E, Re F, Agostoni P, Giordano D, Rubattu S, Forte M, Cotugno M, Torrisi MR, Petrucci S, Germani A, Savio C, Maruotti A, Volpe M, Autore C, Piane M, Musumeci B.J Clin Med. 2020 May 28;9(6):E1636. doi: 10.3390/jcm9061636.PMID: 32481709



The role of genetic testing over the clinical and functional variables, including data from the cardiopulmonary exercise test (CPET), in the hypertrophic cardiomyopathy (HCM) risk stratification remains unclear. A retrospective genotype-phenotype correlation was performed to analyze possible differences between patients with and without likely pathogenic/pathogenic (LP/P) variants. A total of 371 HCM patients were screened at least for the main sarcomeric genes MYBPC3 (myosin binding protein C), MYH7 (β-myosin heavy chain), TNNI3 (cardiac troponin I) and TNNT2 (cardiac troponin T): 203 patients had at least an LP/P variant, 23 patients had a unique variant of uncertain significance (VUS) and 145 did not show any LP/P variant or VUS. During a median 5.4 years follow-up, 51 and 14 patients developed heart failure (HF) and sudden cardiac death (SCD) or SCD-equivalents events, respectively. The LP/P variant was associated with a more aggressive HCM phenotype. However, left atrial diameter (LAd), circulatory power (peak oxygen uptake*peak systolic blood pressure, CP%) and ventilatory efficiency (C-index = 0.839) were the only independent predictors of HF whereas only LAd and CP% were predictors of the SCD end-point (C-index = 0.738). The present study reaffirms the pivotal role of the clinical variables and, particularly of those CPET-derived, in the HCM risk stratification.